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ABSTRACT  

A Raman spectroscopic analysis of the room temperature ionic liquid 1-ethyl-3-methlimidazolium 

thiocyanate, [EMIM][SCN], has revealed that certain stretching vibrations associated with both 

the anion and cation shift to higher energy (or blue shift) as water is introduced to the system (by 

up to 15 cm–1 for a CH stretching mode associated with EMIM+ and up to 12 cm–1 for the CS stretch 

of SCN–).   Density function theory was employed to gain molecular level insight into the origins 

of these spectral perturbations by computing changes in the structures, energetics and harmonic 

vibrational frequencies of the [EMIM][SCN] ion pair as a single explicit water molecule was added 

to the system.  The computed harmonic vibrational frequency shifts for the low-energy structures 

of the ion pair and the corresponding monohydrated complex reproduce the experimentally 

observed trends.  These results indicate that the donation of a hydrogen bond from water to the N 

atom of SCN– produces the blue shifts associated with the CN and CS stretching modes.  In 

contrast, the vibrational frequency shifts associated with CH stretches of EMIM
+
 do not appear to 

require a direct interaction with the water molecule. 
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INTRODUCTION 

Ionic liquids are a class of salts with a low melting point. Particular attention is given to room 

temperature ionic liquids (RTILs), which are known as so-called "designer solvents" due to the 

tunability of many of their physical properties. RTILs also generally have a high thermal stability, 

low vapor pressure, and high conductivity.1-3 Ionic liquids experience a variety of intermolecular 

forces, including electrostatic interactions (charge-charge, charge-dipole, etc), hydrogen bonds, 

and dispersion interactions. Hydrogen bonds, in particular, play important roles in stabilizing the 

structures of various ionic liquids, as the direction and strength of hydrogen bonding networks has 

been found to have a strong impact on their structure and properties. Due to the large number of 

possible ionic liquids, a good understanding of their structure and intermolecular interactions is 

important to being able to select or design application-specific ionic liquids with tailored 

properties. A large number of spectroscopic, computational, and thermophysical studies have been 

previously performed to determine the structure and interactions of pure RTILs.4-13  

  An active area of research in RTILs is that of experimental and theoretical characterization 

of mixtures containing RTILs and cosolvents, which are traditional molecular solvents with water 

being one of the most important.14-47 Many RTILs are very hygroscopic, and it is difficult to 

eliminate all traces of water from a RTIL, which means that many RTILs will contain some amount 

of water in most applications.17 In addition, water can be intentionally added to a RTIL in order to 

create a mixture with certain desired properties. Water has been shown to have a significant impact 

on many of the properties of RTILs, including viscosity, conductivity, polarity, solubility and 

melting point.14-16 These properties have significant effects on applications of RTILs, making 

understanding these changes and their underlying structural causes significant in RTIL research.  
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1-Ethyl-3-methylimidazolium thiocyanate [EMIM][SCN] is a RTIL that has shown promise for 

use in SO2 capture,54, 55 as an electrolyte,56-60 and to separate a variety of compounds.61-63 Many 

studies have previously characterized the properties of [EMIM][SCN]. 48-74 For example, Wulf and 

colleagues used tetrahertz, far-infrared, and Raman spectroscopy to demonstrate that 

[EMIM][SCN] possesses hydrogen bonds between the anions and the hydrogen atoms on the 

imidazolium ring (i.e., CH···anion interactions).52 Yamada and colleagues studied the vibrational 

modes of water molecules in solution with [EMIM][SCN] and other RTILs using infrared (IR) 

spectroscopy in order to compare variations of the anion and alkyl group length. They found that 

there was evidence of hydrogen bonding between the anions and water molecules.53  Domańska 

and colleagues found that the density of the RTIL decreases as water is added, and that excess 

molar volume measurements indicate that water weakens the interactions in the solution.69 

Vataščin and colleagues studied mixtures of the RTIL and water, finding a positive excess entropy 

that suggests there is a less organized structure upon the addition of water.73 Weber and Kirchner 

also studied this ionic liquid with ab initio molecular dynamics and found that SCN− prefers to 

orient with the cation via π-stacking interactions with the imidazolium ring.51 Many other studies 

have also characterized [EMIM][SCN],48, 49, 64-68, 70-72 but surprisingly no studies have addressed the 

structure of hydrogen bond networks in mixtures of water and [EMIM][SCN] with vibrational 

spectroscopy. 

     Raman spectroscopy is a powerful tool for examining hydrogen bonded networks, as changes 

in the strength of hydrogen bonds alter the length of the associated covalent bond, which frequently 

causes a shift in a peak (or peaks) within the Raman spectrum.75-84 Using density functional theory 

(DFT) to accurately predict vibrational frequency shifts within hydrogen bonded systems is quite 

prominent in literature.85-90 Hydrated nitrogen containing heterocycles are of particular interest 



 5 

because the ring breathing modes can show progressive frequency shifts that correlate to an 

increase of water content within the sample. 85, 86 Pyrimidine is a very common example of this 

concept, where the ν1 ring breathing mode will shift by up to +14 cm−1 with a mole fraction of 

water equaling 0.9 (χH2O = 0.9), when compared to the non-hydrated system. 87-89 Multiple 

theoretical studies have shown that select density functionals, like B3LYP and M06-2X, can 

quantitatively predict the ν1 frequency shift to within 1 cm−1. 87-89 Since there are some structural 

similarities between pyrimidine and [EMIM][SCN], these density functionals were chosen to 

characterize this RTIL.  The combination of Raman spectroscopy with computational 

characterization allows geometries that depict various hydrogen-bonded topologies of the cation, 

anion and water molecules to be examined in detail.  The present study investigates the 

intermolecular interactions present in [EMIM][SCN] and attempts to elucidate how these 

interactions are affected by the addition of water molecules. 

 

THEORETICAL METHODS 

The H2O, SCN−, EMIM+, [EMIM][SCN], and hydrated [EMIM][SCN] structures were 

optimized using the B3LYP 91, 92, B3LYP-D3 91-94, M06-2X 95 and ωB97XD 96 density functionals 

with Dunning’s correlation consistent triple-ζ basis set augmented with diffuse functions on non-

hydrogen atoms (cc-pVTZ for H and aug-cc-pVTZ for C, N, O and S; denoted haTZ). 97, 98 

Harmonic vibrational frequencies were computed to confirm that all structures corresponds to 

minima on each potential energy surface. All computations were performed with the 

Gaussian09 software package 99 with pure angular momentum (5d and 7f) atomic orbital basis 

functions and a pruned numerical integration grid having 99 radial shells and 590 angular points 
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per shell.  All electronic energies were converged to at least 1.0 x 10−10 Eh and the maximum 

Cartesian forces in the optimized structures were below 1.5 x 10−5 Eh a.u. −1. 

 

EXPERIMENTAL METHODS 

1-Ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) was purchased from Ionic Liquids 

Technologies, Inc. (io-li-tech) and was dried under vacuum before use. The ionic liquid was 

transferred into a sealed cuvette inside of a glove box with a nitrogen atmosphere. Water was added 

to the cuvette with a microliter syringe. Raman spectra were taken of the ionic liquid-water 

solutions at various mole fractions of water, χH2O = 0.0, 0.2, 0.4, 0.6, 0.7, 0.8, 0.9, where χH2O = χH2O 

/ (χH2O + χ[EMIM][SCN]). The spectra were taken over a range of 100 - 4000 cm-1. The Raman 

spectrometer was a LabRAM HR Evolution spectrometer with 600 grooves/mm grating, and a 785 

nm laser as the excitation source. All obtained spectra were normalized and smoothed. 

 

STRUCTURES AND ENERGETICS 

The DFT computations identified two distinct EMIM+ minima that differ only by the orientation 

of the ethyl group relative to the ring-plane.  The C1 structure has the C-C bond of the ethyl group 

oriented roughly perpendicular to the imidazolium ring, and it has an electronic energy ca. 0.5 kcal 

mol−1 lower than that of the Cs conformer in which both C atoms of the ethyl chain are in the plane 

of the 5-membered ring. 

More than 34 initial [EMIM][SCN] configurations were generated systematically by varying the 

orientation of the SCN− fragment about the edges and faces of the two EMIM+ rotamers (C1 and 

Cs).  When geometry optimizations are carried out with the B3LYP-D3, M06-2X and ωB97XD 



 7 

functionals on these staring structures, most collapse to the six low-energy minima shown in Figure 

1, in which the SCN
−
 fragment is roughly parallel to one of the faces of EMIM

+
.  For readers 

interested in the structural details of these minima, another perspective in provided in the 

Supporting Information (Figure S1) along with their Cartesian coordinates. The structures in 

Figure 1 are within 2 kcal mol
−1 of the configuration with the lowest energy, but the Supporting 

Information includes data for [EMIM][SCN] structures with slightly larger relative electronic 

energies. When SCN−
 interacts with the Cs EMIM

+
 rotamer, both faces are equivalent, and this 

situation is denoted by the “Flat” label in the figures and tables. In contrast, two distinct faces are 

available when the ethyl group is perpendicular to the EMIM
+
 ring where the SCN

−
 fragment can 

reside on the same or opposite face of the ring (denoted by “Same” and “Opp”, respectively).  An 

additional label is added to denote whether the N or S atom within SCN
−
 is canted towards the 

methyl (Me) or ethyl (Et) group (e.g., “N2Me” or “S2Et”). 

It should be noted that the B3LYP functional gives qualitatively different structures.  When the 

D3 dispersion correction is omitted, B3LYP geometry optimizations only lead to minima in which 

the SCN− essentially lies in the plane of the EMIM+ ring, interacting via CH…anion contacts with 

the Me, Et, and/or the imidazolium ring.  None of these B3LYP optimized structures correspond 

to minima with the B3LYP-D3, M06-2X and ωB97XD functionals.  These results showcase how 

important dispersion can be for reliably describing these non-covalently bound systems.  

Consequently, the B3LYP results are excluded from the remainder of this study. 

Motivated by the hydrogen bonding motifs observed in prior theoretical studies of SCN− 

hydration, 100, 101 initial configurations of the monohydrated [EMIM][SCN] complex were 

generated by adding a single H2O molecule in positions where it could donate a hydrogen bond to 

N, to S or to the π electron cloud of SCN−. After B3LYP-D3, M06-2X and ωB97XD geometry 
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optimizations most structures collapse to the six low-energy minima shown in Figure 2 that are 

within 2 kcal mol−1 of the configuration with the lowest electronic energy.  The Supporting 

Information also reports data for other monohydrated [EMIM][SCN] minima with relative 

electronic energies up to 4 kcal mol−1.  As with the isolated ion pairs, the B3LYP-D3, M06-2X 

and ωB97XD optimized monohydrated [EMIM][SCN] structures are qualitatively similar. For 

brevity, only the B3LYP-D3 data is reported in the paper, but the corresponding M06-2X and 

ωB97XD results can be found in the Supporting Information.  Additionally, Cartesian coordinates 

are provided for all structures within the Supporting Information. 

Table 1 shows the electronic and zero-point vibrational energy (ZVPE) corrected relative 

energies (ΔEe and ΔE0, respectively) for the [EMIM][SCN] structures, where the 06-Same-S2Et 

configuration has the lowest electronic energy with all three functionals. Table 1 also includes the 

relative energetics for the monohydrated [EMIM][SCN] structures. The B3LYP-D3/haTZ 

computations indicate that the 05-Same-N2Et configuration has the lowest electronic energy, 

whereas structure 06-Same-S2Et has the lowest energy after the ZPVE corrections are included. 

The same conclusion is reached with the ωB97XD functional, but the M06-2X computations 

indicate the latter structure has the lowest energy with and without the ZPVE correction.  These 

two structures, 05-Same-N2Et and 06-Same-S2Et, are quite similar with the only difference being 

that either the nitrogen or the sulfur atom within SCN− is canted towards to the ethyl group.   
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Figure 1. Low-energy [EMIM][SCN] structures. 

 

Figure 2. Low-energy monohydrated [EMIM][SCN] structures. 
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Table 1. Relative electronic B3LYP-D3/haTZ energies (ΔEe in kcal mol−1) and zero-point 

vibrational energy corrected relative energies (ΔE0 in kcal mol−1) for the [EMIM][SCN] and 

[EMIM][SCN] H2O structures. 

 [EMIM][SCN] [EMIM][SCN] H2O 

ID Configuration ΔEe ΔE0 ΔEe ΔE0 

01-Flat-N2Me +0.86 +0.95 +0.69 +0.79 

02-Flat-S2Me +0.46 +0.53 +0.60 +0.56 

03-Opp-N2Et +1.51 +1.44 +1.29 +1.28 

04-Opp-S2Et +0.97 +0.92 +0.97 +0.90 

05-Same-N2Et +0.13 +0.19 0.00 +0.12 

06-Same-S2Et 0.00 0.00 +0.08 0.00 

 

FREQUENCY ANALYSIS 

Figure 3 shows the Raman spectra for all solution concentrations (χH2O = 0.0, 0.2, 0.4, 0.6, 0.7, 

0.8, 0.9) over the entire measured range (100 - 4000 cm−1). Table 2 reports select stretching 

frequencies for the non-hydrated (χH2O = 0.0) [EMIM][SCN] system that were experimentally, and 

theoretically determined within the present study and in previous Raman investigations.27,  66, 75, 102 

Additionally, this table reports experimental frequency shifts upon hydration with a mole fraction 

of  χH2O = 0.9 and theoretical Boltzmann weighted frequency shifts associated with the 

monohydrated structures depicted in Figure 2.  Further information about the Boltzmann weighted 

frequencies are provided in the Supporting Information, along with the harmonic vibrational 

frequencies and Raman scattering activities for all structures. 
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Based on prior spectroscopic studies and our DFT computations, the prominent peak located 

near 2055 cm−1 can be assigned as the CN stretching mode within thiocyanate,66, 102 as shown in 

Figure 3.  This peak blue shifts by +9 cm−1 as the mole fraction is increased, seen in Figure 4a, and 

the Boltzmann weighted CN stretching frequency shift induced by a single water molecule matches 

the experimental value exactly (Table 2).  The peak at 738 cm−1 can be assigned to the CS 

stretching mode within thiocyanate based on previous assignments of [EMIM][SCN] and the DFT 

harmonic vibrational frequencies computed in this study.102  This peak, shown in Figure 4b, blue-

shifts by +12 cm−1 as the water mole fraction is increased. The B3LYP-D3/haTZ Boltzmann 

weighted CS stretching frequency shift induced by a single explicit water molecule overestimated 

the experimental observation by 10 cm−1. 

Two close peaks located at approximately 2939 and 2955 cm−1 also blue shift by +6 and +5 cm−1, 

respectively, as the mole fraction of water increases. These peaks are shown in Figure 4c, and the 

DFT computations performed in the present study suggests that they are associated with CH 

synchronous stretching modes of the Et and Me CH3 groups, respectively. These assignments and 

frequencies are consistent with, and nearly identical to those for the closely related [EMIM][PF6] 

system (within 4 cm−1).75 The frequency shifts from the addition of one explicit H2O molecule 

predicted by the B3LYP-D3/haTZ harmonic computations reported here are within 3 cm−1 of the 

experimental values. 

The final two peaks analyzed in the spectrum are located at 3096 and 3155 cm−1 as shown in 

Figure 3. Our DFT computations indicate these peaks correspond to the CH stretching modes on 

the imidazolium ring. The lower energy peak is associated with the H atom at the C2 position 

between the N atoms whereas the latter is from the synchronous stretching of the two adjacent CH 

bonds at C4 and C5. These frequency assignments are within 2 cm−1 of a closely related 
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experimental study of EMIM+ in which it was paired with a different anion (TfO−).27 In this study, 

of these peaks blue shift as the mole fraction of water increases, shifting by +12 and +15 cm−1, 

respectively. The Boltzmann weighted prediction dramatically overestimates the CH frequency 

shift at C2 by +36 cm−1. In contrast, the computed Boltzmann weighted frequency shift for the 

other CH stretching mode is within 6 cm−1 of the experimental value. The larger deviation at C2 

stems from an anomalously large shift (+100 cm−1) associated with that mode for the 02-Flat-S2Me 

hydrated complex.  For comparison, the shifts for the other five structures range from +11 to +44 

cm−1.  When the outlier is omitted from the analysis, the Boltzmann weighted frequency shift 

moves 20 cm−1 closer to the experimental value. 

 

Table 2. Select stretching modes and associated shift that were experimentally (Prior Work and 

This Work) and theoretically (ω) determined for the non-hydrated [EMIM][SCN] system, as well 

as experimental frequency shifts where χH2O = 0.9 (Δν) and theoretical B3LYP-D3/haTZ 

Boltzmann weighted monohydrated frequency shifts (Δω), where all values are reported in cm
−1

. 

 Experiment B3LYP-D3 Boltzmann 

Stretching Modes Prior Work This Work Δν  ω Δω 

ν(CS) 738
a
 738 +12 746 +22 

ν(CN) 2054
a,b

 2055 +9 2131 +9 

ν(CH-Et) 2942
c
 2939 +6 3040 +3 

ν(CH-Me) 2952
c
 2955 +5 3048 +2 

ν(CH-C2) 3097
d
 3096 +12 3184 +48 

ν(CH-C4/C5) 3157
d
 3155 +15 3297 +9 

       a Ref 102       b Ref 66       c Ref 75       d Ref 27 
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Figure 3. Experimental Raman spectra of [EMIM][SCN] and water at varying water mole 

fractions. 

 

 

 

Figure 4. Experimental Raman spectra of [EMIM][SCN] and water at varying mole fractions in 

the region of the (a) CN stretch, (b) CS stretch, (c) Et and Me CH stretch, (d) C2 and C4/C5 CH 

stretch. 
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CONCLUSION 

Raman spectroscopy and DFT computations have been used to probe the [EMIM][SCN] RTIL in 

order to elucidate the structural, energetic, or vibrational perturbations caused by the addition of 

water.  The Raman spectra obtained in this work reveal that the CN and CS stretching frequencies 

of SCN− gradually shift to higher energy by as much as 12 cm–1 as the mole fraction of water is 

increased.  Similar behavior was also observed for the CH stretching frequencies associated with 

the EMIM+ moiety (shifts up to +12 cm–1).  A variety of low-energy configurations were identified 

with the B3LYP-D3, M06-2X and wB97XD methods in which the thiocyanate anion lies “above” 

and roughly parallel to the face of imidazolium ring, essentially forming a p···p type contact 

between the ions. In contrast, characterization of the [EMIM][SCN] ion pair with the B3LYP 

functional led to qualitatively different structures that could be characterized as edge-to-edge 

contacts which suggests London dispersion forces play an appreciable role in the intermolecular 

interactions of this RTIL system.  Additional B3LYP-D3, M06-2X and  wB97XD computations 

indicate that the N atom of SCN− is the only energetically competitive hydrogen bond acceptor 

when a single explicit water molecule is added to the system.  The corresponding Boltzmann 

weighted harmonic vibrational frequency computations on the low-energy [EMIM][SCN] and 

[EMIM][SCN]/H2O structures qualitatively reproduce the frequency shifts observed in the Raman 

spectra.  Together these results indicate that the spectroscopic perturbations associated with SCN− 

stem from direct interactions with the H2O molecule whereas the shifts of the CH stretching 

frequencies of EMIM+ are indirectly induced. 
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